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A Capital services and capital stock

This part of the Appendix adresses the issue of whether capital services or the capital stock
should be used in the production function. For this, we follow closely Jorgenson and Griliches
[1967], Jorgenson et al. [1987], Hall and Jorgenson [1967], and Oulton and Srinivasan [2003]
amongst many others.

A.1 Concepts

We first make some definitions and settle notation that will be used in what follows:

• The wealth concept of aggregate capital, that is, capital assets available in the NIPA

assets accounts, is the sum of the values of different asset stocks. These asset stocks

are the perpetual inventory value of past investments. Productive capital stock is the

sum of the value of those assets that can be used to produce output. We will refer to

this as “wealth” or “productive wealth” for simplicity. Measured in prices of a base

year (constant prices), the growth of wealth is a weighted average of the growth rates

of the asset stocks. The weights are the shares of each asset in the value of wealth.

Because the value of each asset is its price times its quantity, these weights are referred

to as asset price weights.

• A second concept of aggregate capital is capital services. In this case, to obtain an

aggregate measure of capital, different types of asset stocks are weighted by their rental

prices.

What we, and the authors mentioned above, argue, is that capital services and not wealth

should be used in a production function. In that sense, the MPK is the extra output obtained

from a unit increase in the amount of capital services used by the firm. Of course, the two

concepts of capital are related. The current price of a (productive) asset, in theory, should

equal the present value of all the future streams of rental prices. However, as we show below,

the correct price of capital to aggregate different types of assets is pk, the price of capital,

and not pA, the price of the asset. This has implications for the evolution of wealth vs

capital services over time. For instance, assets for which the rental price is high because

they depreciate quickly or because its asset price falls faster, will have a higher weight in

the capital services measure than in the wealth measure. This is the case, for instance, of

IT assets whose weight in capital services will be higher than in wealth due to the above

mentioned reasons.
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A.2 The rental price and asset prices

Let us now define pk and pA. We follow very closely the example in Oulton and Srinivasan

[2003] which in turn is based on the original contribution of Jorgenson and Griliches [1967].

A leasing company buys a machine at t− 1 and leases it out at t. The price it pays to buy

this machine of age 0, at time t − 1 is pAt−1,0. The value of this investment one period later

will depend on the nominal rate of return rt: (1 + rt)p
A
t−1,0. This rate of return depends on

various things. First, the leasing company is paid a rental pkt,0 during period t. This is the

rental price for the services of capital (not the asset price pA). By the end of period t the

company has the same asset but now one year older with a market price of pAt,1. If we ignore

taxes throughout for simplicity, the value of this investment is:

(1 + rt)p
A
t−1,0 = pkt,0 + pAt,1. (1)

If we now simply iterate this equation forward, assuming that the asset has a lifetime of N

periods, we obtain the standard asset pricing formula: pAt−1,0 =
∑N

s=0 p
k
t+s,s/

∏s
τ=0(1 + rt+τ ).

Because we do not commonly observe rental prices as firms use their own capital, it is

useful to derive the rental price from the asset prices which are observable in the data. From

(1), we can obtain:

pkt,0 = rtp
A
t−1,0 + (pAt−1,0 − pAt,1) (2)

The second term on the right-hand-side of (2) is the gain or loss from holding the asset

between t− 1 and t. This has two components: depreciation and capital gain or loss. If we

add and subtract pAt,0:

pkt,0 = rtp
A
t−1,0 + (pAt,0 − pAt,1)− (pAt,0 − pAt−1,0) (3)

The first term in brackets is depreciation (the difference today between the value of a new

and and old machine). The second term is the capital gain or loss from holding the same

machine between two periods. If we assume a constant rate of depreciation δ =
pAt,0−pAt,1
pAt,0

, then

(3) becomes:

pkt,0 = rtp
A
t−1,0 + δpAt,0 − (pAt,0 − pAt−1,0) (4)

which is the Hall-Jorgenson (1967) formula for the cost of capital in discrete time.

So this expression gives us the rental price as a function of the rate of return, the depreci-

ation rate, and the price of new assets. The prices of new assets are observable (otherwise we

could not measure investment in constant prices). And since it depends only on prices of new

assets, we can drop the age subscript. Also, since we are interested in measuring aggregate
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capital, we need to consider that there are many assets indexed by i in the economy. Thus,

we can write (4) as:

pkit = rtp
A
i,t−1 + δip

A
it − (pAit − pAi,t−1) (5)

Notice that we are assuming here the same rate of return for all assets i consistent with

profit maximization.1 In practice, there may be frictions that may lead to different rates of

returns for different assets. But since we are not modelling them here, we prefer to assume

a common rate of return.

A.3 Aggregating over different assets

Let us ignore the problem of aggregating over different vintages of assets for simplicity

and only address how to calculate a measure of aggregate capital in a production function

when capital is made up of different assets. Since we assume in the model a neoclassical

model of production and investment, here we simply assume a neoclassical model of capital

aggregation. Suppose that the firm uses labor and several (M) types of assets to produce

output:

Yt = F (K1t,K2t, ..., KMt, Lt, t) (6)

We want to express output in terms of only labor and an aggregate capital measure:

Yt = G(Kt,, Lt, t) (7)

How do we go from (6) to (7)? That is, how do we aggregate individual assets onto an

aggregate measure Kt? Take logs and totally differentiate (6) to obtain the rate of growth

of output (growth rates denoted by a hat):

Ŷt =
M∑
i=1

(
∂ lnYt
∂ lnKit

)
K̂it +

∂ lnYt
∂ lnLt

L̂t +
∂ lnYt
∂ ln t

(8)

And using (7) we have:

Ŷt =
∂ lnYt
∂ lnKt

K̂t +
∂ lnYt
∂ lnLt

L̂t +
∂ lnYt
∂ ln t

(9)

Equations (8) and (9) imply that:

K̂t =
M∑
i=1

[(
∂ lnYt
∂ lnKit

)
/

(
∂ lnYt
∂ lnKt

)]
K̂it (10)

1For a dollar spent on capital at t− 1 the rental price of capital formula is the familiar (ignoring taxes)
expression pkit = rt + δi + ∆pAit(1− δi).
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The derivatives in (10) are not directly observable, but if we make the neoclassical as-

sumption that factors are paid their marginal revenue products, we would have that:

∂ lnYt
∂ lnKit

=
pkitKit

ptYt
,

∂ lnYt
∂ lnKt

=
pktKt

ptYt
,

where pkt is the rental price of aggregate capital (the value of the marginal product of

capital). Aggregate capital income is given by pktKt =
∑M

i=1 p
k
itKit. This implies that:

K̂t =
M∑
i=1

ωitK̂it, (11)

where

ωit =
pkitKit∑M
i=1 p

k
itKit

(12)

What this equation suggests is that, to be consistent with the neoclassical production

function, aggregate capital growth is the weighted sum of individual assets where the weights

are determined by the income weights of the different assets. In practical terms, in discrete

time, we use a Törnqvist chain index:

ln[Kt/Kt−1] =
M∑
i=1

w̄it ln[Kit/Ki,t−1], w̄it =
1

2
(wit + wi,t−1) (13)

Note that these weights have used rental prices and not asset prices. Thus, aggregate

capital must correspond to the definition of capital services given in section 1 above, and not

with the definition of wealth since we are not using asset price weights. That is, aggregate

capital in a production function is not the NIPA productive asset stocks, it is capital services.

The BEA calculates wealth growth using the same formula, but where the weights are asset

price weights (as it should for a wealth measure).2 Calling Wt the level of productive capital,

the growth of productive wealth is calculated by BEA as follows:

ln[Wt/Wt−1] =
M∑
i=1

v̄it ln[Wit/Wi,t−1], v̄it =
1

2
(vit + vi,t−1), (14)

2The PWT Tables also use a wealth mesure of capital stocks. As Feenstra et al. [2015] state “Ideally, this
would be a measure of capital services, not capital stocks. [...] However, the data requirements for estimating
capital services are higher than for a capital stock measure”.
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where now the weights used are the shares of each type of asset (Wit) in the nominal capital

stock:

vit =
pAitWit∑M
i=1 p

A
itWit

(15)

Since
∑M

i=1 p
A
itKit =

∑M
i=1 p

A
itWit, the only difference between (13) and (14)-(15) is in the

weights used. As mentioned above, these two measures will differ because capital services

will give a higher weight to assets whose depreciation is high and whose asset prices are

falling faster over time.

A.4 Real wealth and real capital services

To calculate real wealth, we simply take the level of nominal wealth in a specific (base) year

s:
∑M

i=1 p
A
isWis. Then we generate a series of, say, chained 2009 dollars by applying the rate

of growth formula (14)-(15) to this 2009 value.

By the same token, we can calculate a series for the real level of capital stock by calculating

the nominal level for a base period:
∑M

i=1 p
k
isKis, and then applying the growth rate formula

(13) to calculate the level of capital services at 2009 dollars. Notice that, in the base year,

this amounts to setting capital services to total capital income. This is why in the BLS file

“Historical Multifactor Productivity Measures (SIC 1948–87 linked to NAICS 1987–2017)”3

capital services coincide with capital income in the base period. This, obviously, does not

imply that capital services equal capital income in each period.

B Intertemporal Problem

The representative household maximizes the discounted sum of utilities

∞∑
t=0

βtV (pst, pgt,Et).

where V (ps, pg,E) is the indirect utility function

V (ps, pg,E) =
1

ε

[
E

ps

]ε
− ν

γ

(
ps
pg

)−γ
− 1

ε
+
ν

γ
.

where 0 ≤ ε ≤ γ ≤ 1 and ν > 0.

3Available at https://www.bls.gov/mfp/mprdload.htm#Historical%20Series.
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The budget constraint of the consumer is

Et +Kt+1 = wt +Kt(1 + rt − δ)

Note that total expenditure is

Et = pstCst + Cgt

In the intertemporal problem the household chooses the variables Et and Kt+1. Due to the

indirect utility function the intratemporal problem is already solved. In the intratemporal

problem the household, given Et chooses the variables Cst and Cgt.
4

The Lagrangean of the household is

L =
∞∑
t=0

βtV (pst, pgt,Et) +
∞∑
t=0

µt [wt +Kt(1 + rt − δ)− Et −Kt+1] .

The household maximizes with respect to Et and Kt+1.

Let us compute first the derivative of V with respect to Et. This is

V
′

E(pst, pgt,Et) =

[
1

pst

]ε
Eε−1
t (16)

Then FOCs are

βt
[

1

pst

]ε
Eε−1
t = µt (17)

µt+1[1 + rt+1 − δ] = µt (18)

From (17) and (18) we obtain

β[1 + rt+1 − δ] =

[
pst+1

pst

]ε
Eε−1
t

Eε−1
t+1

(19)

and using the fact that

pst =
(Agt)

1−α

(Ast)1−α

we can write

β[1 + rt+1 − δ] =

[(
Agt+1

Ast+1

)1−α(
Ast
Agt

)1−α
]ε(

Et
Et+1

)ε−1
(20)

which is the Euler Equation.

4Note that in writing the intertemporal and static budget constraints we are already assuming that pgt
is the numeraire each period.
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If we define the growth factor of technology in each sector as

Ast+1

Ast
= 1 + γs = gs (21)

Agt+1

Agt
= 1 + γg = gg (22)

we can write

β[1 + rt+1 − δ] =

(
gg
gs

)(1−α)ε(
Et+1

Et

)1−ε

. (23)

By rewriting the Euler equation as

Et+1

Et
= {β[1 + rt+1 − δ]}

1
1−ε

(
gs
gg

) (1−α)ε
1−ε

, (24)

we can compute the intertemporal elasticity of substitution of consumption expenditure (EIS).

The EIS is defined as as the derivative of log total expenditure with respect to the log of

the interest rate holding within-period relative prices and the discounted marginal utility of

expenditure constant, where expenditure and the interest rate are nominal.5 We can thus

define the EIS as (see Blundell et al. [1994])

EIS =

d(Et+1/Et)
Et+1/Et

d(1+rt+1−δ)
1+rt+1−δ

= − V
′
E

V
′′
EEE

=
1

1− ε
. (25)

C Balanced Growth

We now look for a balanced growth path. We assume that expenditure grows at a constant

rate, that is Et+1/Et = 1 + γE = gE so from the Euler equation

β[1 + rt+1 − δ] =

(
gg
gs

)(1−α)ε

(1 + γE)1−ε

and

rt =
1

β

(
gg
gs

)(1−α)ε

(gE)1−ε − 1 + δ. (26)

5The alternative would be to relate expenditure deflated by a single price index to the real interest rate.
As Gorman [1959] shows, however, deflation by a single price index requires within period homotheticity,
which is not the case in this setting.
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The FOCs of capital for the goods firm is

rt = α

(
kgt
ngt

)α−1
A1−α
gt

and, as that the capital/labor ratio in each sector is equal to the economy wide one in

equilibrium, we can equate it to (26) to obtain

1

β

(
gg
gs

)(1−α)ε

(1 + γE)1−ε − 1 + δ = α (Kt)
α−1A1−α

gt

1

β

(
gg
gs

)(1−α)ε

(gE)1−ε − 1 + δ = α

(
Agt
Kt

)1−α

.

For this equation to hold in each period it must be that 1 + γk = gk = gg. So aggregate

capital must grow at the same rate as the technology in the goods sector.

We can write total output in units of the numeraire (goods) as

Ygt = Kα
t A

1−α
gt

It is then straightforward to show that Ygt also grows at factor gg. Also, wages are given

by

We can write the wage as

wt = (1− α)Kα
t A

1−α
gt

and so it also grows at factor gg.

Finally, using the dynamic budget constraint

Et +Kt+1 = wt +Kt(1 + rt − δ)

we observe that bothK and w grow at rate γg and so it must hold that γE = γg, confirming

the initial assumption that expenditure grows at a constant rate and so the existence of a

balanced growth path.

D From Boppart (2014) to the ISTC model

The indirect utility function is obtained with ν = 0 and it is given by equation (20) in

the main text. Recall that we drop the terminology services and goods in this model to refer

to consumption and investment sectors.

In the intertemporal problem the representative household maximizes the discounted sum
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of utilities
∞∑
t=0

βtV (pt, Et),

subject to the budget constraint

Et +Kt+1 = wt +Kt(1 + rt − δ).

Note that the derivative of V with respect to Et is the same as in the structural change

model

V
′

E(pt, Et) =

[
1

pt

]ε
Eε−1
t (27)

so the FOCs are also identical to the structural change model

βt
[

1

pt

]ε
Eε−1
t = µt, (28)

µt+1[1 + rt+1 − δ] = µt, (29)

implying that the Euler equation is also the same

β[1 + rt+1 − δ] =

[(
AIt+1

Act+1

)1−α(
Act
AIt

)1−α
]ε(

Et
Et+1

)ε−1
, (30)

and we have used the definition of pt given by equation (25) in the main text. It follows that

all the characterization of the balanced growth path is the same as in the structural change

model.

E Calibration of the ISTC model

From (30) we can isolate rt+1 and equate the resulting expression to the marginal product

of capital of the investment firm to obtain

1

β

(
gI
gc

)(1−α)ε

(gE)1−ε − 1 + δ = α

(
AIt
Kt

)1−α

,

where we used
Act+1

Act
= 1 + γc = gc, (31)

AIt+1

AIt
= 1 + γI = gI , (32)
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Et+1

Et
= 1 + γE = gE, (33)

and the fact that the capital/labor ratio in each sector is equal to the economy wide one.

From the above we can find the value of initial capital consistent with balanced growth

K0 =
(αβ)1/(1−α)AI0[(

gI
gc

)(1−α)ε
(gE)1−ε − β(1 + δ)

]1/(1−α)
and using that gE = gI

K0 =

{
αβ[

g1−αεI gαε−εc − β(1 + δ)
]}1/(1−α)

AI0

and

rt =
1

β
g1−αεI gαε−εc − 1 + δ. (34)

We can now write the nominal investment rate in the initial period I0
YI0

, where YI0 is

output in investment units in the initial period.

I0
YI0

=
K1 − (1− δ)K0

(K0)
αA1−α

I0

I0
YI0

=
(1 + γI)K0 − (1− δ)K0

(K0)
αA1−α

I0

I0
YI0

=
(γI + δ)K0

(K0)
αA1−α

I0

I0
YI0

=
(γI + δ)

A1−α
I0

K
(1−α)
0

and using K0

I0
YI0

=
(γI + δ)

A1−α
I0

{
αβ[

g1−αεI gαε−εc − β(1 + δ)
]}A1−α

I0

I0
YI0

=
αβ(γI + δ)[

g1−αεI gαε−εc − β(1 + δ)
] (35)

and so the nominal investment rate is constant in the first period and in all subsequent ones.

Define I0/YI0 = s, C0p0/YI0 = 1− s, where C0 = E0/p0. Also, as consumption at each t
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is given by

Ct =
Et
pt

=
Et

(AIt)1−α
(Act)

1−α,

we have that the growth rate of consumption along the balanced growth path is

γCons = γE + (1− α) γc − (1− α) γI

γCons = (1− α) γc + αγI .

The Laspeyres chain-weighted index of GDP is

QL
t =

I1 + p0C1

I0 + p0C0

,

and using model’s growth rates along the balanced growth path

QL
t =

I0(1 + γI) + p0C0 [1 + (1− α) γc + αγI ]

I0 + p0C0

,

QL
t =

sYI0(1 + γI) + (1− s)YI0 [1 + (1− α) γc + αγI ]

YI0
,

QL
t = s(1 + γI) + (1− s) [1 + (1− α) γc + αγI ] ,

QL
t = 1 + sγI + (1− s) [(1− α) γc + αγI ] .

So the Laspeyres growth factor is a constant weight average of real investment and consump-

tion growth.

The Paasche chain-weighted index of GDP is

QP
t =

I1 + p1C1

I0 + p1C0

,

QP
t =

I1 + p1C1

I1/(1 + γI) + p1C1/ [1 + (1− α) γc + αγI ]
,

QP
t =

YI1
sYI1/(1 + γI) + (1− s)YI1/ [1 + (1− α) γc + αγI ]

,

QP
t =

1

s/(1 + γI) + (1− s)/ [1 + (1− α) γc + αγI ]
.

The Fisher chain-weighted index of GDP is then

QF
t =

√
QL
t Q

P
t =

√
s(1 + γI) + (1− s) [1 + (1− α) γc + αγI ]

s/(1 + γI) + (1− s)/ [1 + (1− α) γc + αγI ]
. (36)
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So GDP growth, as measured with a Fisher index, is constant in the ISTC model. As both

nominal GDP (i.e. GDP in investment units) and real GDP grow at a constant rate, also

the relative price investment/GDP grows (declines) at a constant rate.

In the calibration in the paper we equate (35), (36) and the growth rate of I/Y to the

data counterparts to pin down γI , γc and ε.
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